Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 1

Answer

$$\left\langle {\frac{1}{3},0} \right\rangle $$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to + \infty } \left\langle {\frac{{{t^2} + 1}}{{3{t^2} + 2}},\frac{1}{t}} \right\rangle \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{t \to + \infty } \left\langle {\frac{{{t^2} + 1}}{{3{t^2} + 2}},\frac{1}{t}} \right\rangle = \left\langle {\mathop {\lim }\limits_{t \to + \infty } \frac{{{t^2} + 1}}{{3{t^2} + 2}},\mathop {\lim }\limits_{t \to + \infty } \frac{1}{t}} \right\rangle \cr & {\text{ }} = \left\langle {\frac{{{{\left( { + \infty } \right)}^2} + 1}}{{3{{\left( \infty \right)}^2} + 2}},\frac{1}{{ + \infty }}} \right\rangle \cr & {\text{Simplifying}} \cr & {\text{ }} = \left\langle {\frac{\infty }{\infty },0} \right\rangle \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{t \to + \infty } \left\langle {\frac{{{t^2} + 1}}{{3{t^2} + 2}},\frac{1}{t}} \right\rangle = \mathop {\lim }\limits_{t \to + \infty } \left\langle {\frac{{\frac{{{t^2}}}{{{t^2}}} + \frac{1}{{{t^2}}}}}{{\frac{{3{t^2}}}{{{t^2}}} + \frac{2}{{{t^2}}}}},\frac{1}{t}} \right\rangle \cr & {\text{ }} = \mathop {\lim }\limits_{t \to + \infty } \left\langle {\frac{{1 + \frac{1}{{{t^2}}}}}{{3 + \frac{2}{{{t^2}}}}},\frac{1}{t}} \right\rangle \cr & {\text{ }} = \left\langle {\frac{{1 + \frac{1}{{{{\left( \infty \right)}^2}}}}}{{3 + \frac{2}{{{{\left( \infty \right)}^2}}}}},\frac{1}{\infty }} \right\rangle \cr & {\text{ }} = \left\langle {\frac{1}{3},0} \right\rangle \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.