Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 10

Answer

$${\bf{r}}'\left( t \right) = \frac{1}{{1 + {t^2}}}{\bf{i}} + \left( {\cos t - t\sin t} \right){\bf{j}} - \frac{1}{{2\sqrt t }}{\bf{k}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left( {{{\tan }^{ - 1}}t} \right){\bf{i}} + t\cos t{\bf{j}} - \sqrt t {\bf{k}} \cr & {\text{Differentiate}} \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {{\bf{r}}\left( t \right)} \right] \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {\left( {{{\tan }^{ - 1}}t} \right){\bf{i}} + t\cos t{\bf{j}} - \sqrt t {\bf{k}}} \right] \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {{{\tan }^{ - 1}}t} \right]{\bf{i}} + \frac{d}{{dt}}\left[ {t\cos t} \right]{\bf{j}} - \frac{d}{{dt}}\left[ {\sqrt t } \right]{\bf{k}} \cr & {\bf{r}}'\left( t \right) = \frac{1}{{1 + {t^2}}}{\bf{i}} + \left( {\cos t - t\sin t} \right){\bf{j}} - \frac{1}{{2\sqrt t }}{\bf{k}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.