Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 24

Answer

$${\bf{r}} = \left( {2{\bf{i}} - \pi {\bf{j}}} \right) + t\left( { - 2\sqrt 3 {\bf{i}} - 3{\bf{j}}} \right)$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 4\cos t{\bf{i}} - 3t{\bf{j}};{\text{ }}{P_0}\left( {2, - \pi } \right) \cr & {\text{Let }}t = \frac{\pi }{3},{\text{ then }}{\bf{r}}\left( {\frac{\pi }{3}} \right) \cr & {\bf{r}}\left( {\frac{\pi }{3}} \right) = 4\cos \left( {\frac{\pi }{3}} \right){\bf{i}} - 3\left( {\frac{\pi }{3}} \right){\bf{j}} \cr & {\bf{r}}\left( {\frac{\pi }{3}} \right) = 4\left( {\frac{1}{2}} \right){\bf{i}} - \pi {\bf{j}} \cr & {\bf{r}}\left( {\frac{\pi }{3}} \right) = 2{\bf{i}} - \pi {\bf{j}} \cr & t = \frac{\pi }{3}{\text{ at }}{P_0} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( {\frac{\pi }{3}} \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {4\cos t{\bf{i}} - 3t{\bf{j}}} \right] \cr & {\bf{r}}'\left( t \right) = - 4\sin t{\bf{i}} - 3{\bf{j}} \cr & {\bf{r}}'\left( {\frac{\pi }{3}} \right) = - 4\sin \left( {\frac{\pi }{3}} \right){\bf{i}} - 3{\bf{j}} \cr & {\bf{r}}'\left( {\frac{\pi }{3}} \right) = - 4\left( {\frac{{\sqrt 3 }}{2}} \right){\bf{i}} - 3{\bf{j}} \cr & {\bf{r}}'\left( {\frac{\pi }{3}} \right) = - 2\sqrt 3 {\bf{i}} - 3{\bf{j}} \cr & {\text{The vector equation is}} \cr & {\bf{r}} = \left( {2{\bf{i}} - \pi {\bf{j}}} \right) + t\left( { - 2\sqrt 3 {\bf{i}} - 3{\bf{j}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.