Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 20

Answer

$$x = 1 + 2t;{\text{ }}y = - 2$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = {e^{2t}}{\bf{i}} - 2\cos 3t{\bf{j}};{\text{ }}{t_0} = 0 \cr & {\text{Calculate }}{\bf{r}}\left( {{t_0}} \right) \cr & {\bf{r}}\left( 0 \right) = {e^0}{\bf{i}} - 2\cos \left( 0 \right){\bf{j}} \cr & {\bf{r}}\left( 0 \right) = {\bf{i}} - 2{\bf{j}} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( {{t_0}} \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {{e^{2t}}{\bf{i}} - 2\cos 3t{\bf{j}}} \right] \cr & {\bf{r}}'\left( t \right) = 2{e^{2t}}{\bf{i}} + 6\sin 3t{\bf{j}} \cr & {\bf{r}}{\text{'}}\left( 0 \right) = 2{e^0}{\bf{i}} + 6\sin \left( 0 \right){\bf{j}} \cr & {\bf{r}}{\text{'}}\left( 1 \right) = 2{\bf{i}} \cr & {\text{Let }}{{\bf{r}}_0} = {\bf{r}}\left( {{t_0}} \right){\text{ and }}{{\bf{v}}_0}{\text{ = }}{\bf{r}}{\text{'}}\left( {{t_0}} \right){\text{ }} \cr & {\text{The tangent line to the graph of }}{\bf{r}}\left( t \right){\text{ at }}{{\bf{r}}_0}{\text{ is given by the vector }} \cr & {\text{equation}} \cr & {\bf{r}} = {{\bf{r}}_0} + t{{\bf{v}}_0} \cr & {\bf{r}} = {\bf{r}}\left( {{t_0}} \right) + t{\bf{r}}{\text{'}}\left( {{t_0}} \right){\text{ }} \cr & {\bf{r}} = {\bf{i}} - 2{\bf{j}} + t\left( {2{\bf{i}}} \right) \cr & {\bf{r}} = {\bf{i}} - 2{\bf{j}} + 2t{\bf{i}} \cr & {\bf{r}} = \left( {1 + 2t} \right){\bf{i}} - 2{\bf{j}} \cr & {\text{Thus}},{\text{the parametric equations of the tangent line at }}t = {t_0}{\text{ are:}} \cr & x = 1 + 2t;{\text{ }}y = - 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.