Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 25

Answer

$${\bf{r}} = \left( {4{\bf{i}} + {\bf{j}}} \right) + t\left( { - 4{\bf{i}} + {\bf{j}} + 4{\bf{k}}} \right)$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = {t^2}{\bf{i}} - \frac{1}{{t + 1}}{\bf{j}} + \left( {4 - {t^2}} \right){\bf{k}};{\text{ }}{P_0}\left( {4,1,0} \right) \cr & {\text{Let }}t = - 2,{\text{ then }}{\bf{r}}\left( { - 2} \right) \cr & {\bf{r}}\left( { - 2} \right) = {\left( { - 2} \right)^2}{\bf{i}} - \frac{1}{{ - 2 + 1}}{\bf{j}} + \left( {4 - {{\left( { - 2} \right)}^2}} \right){\bf{k}} \cr & {\bf{r}}\left( { - 2} \right) = 4{\bf{i}} + {\bf{j}} + 0{\bf{k}} \cr & t = - 2{\text{ at }}{P_0} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( { - 2} \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {{t^2}{\bf{i}} - \frac{1}{{t + 1}}{\bf{j}} + \left( {4 - {t^2}} \right){\bf{k}}} \right] \cr & {\bf{r}}'\left( t \right) = 2t{\bf{i}} + \frac{1}{{{{\left( {t + 1} \right)}^2}}}{\bf{j}} - 2t{\bf{k}} \cr & {\bf{r}}'\left( { - 2} \right) = - 4\sin \left( {\frac{\pi }{3}} \right){\bf{i}} - 3{\bf{j}} \cr & {\bf{r}}'\left( { - 2} \right) = 2\left( { - 2} \right){\bf{i}} + \frac{1}{{{{\left( { - 2 + 1} \right)}^2}}}{\bf{j}} - 2\left( { - 2} \right){\bf{k}} \cr & {\bf{r}}'\left( { - 2} \right) = - 4{\bf{i}} + {\bf{j}} + 4{\bf{k}} \cr & {\text{The vector equation is}} \cr & {\bf{r}} = \left( {4{\bf{i}} + {\bf{j}}} \right) + t\left( { - 4{\bf{i}} + {\bf{j}} + 4{\bf{k}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.