Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 26

Answer

$${\bf{r}} = t{\bf{i}} + {\bf{j}} + t{\bf{k}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \sin t{\bf{i}} + \cosh t{\bf{j}} + \left( {{{\tan }^{ - 1}}t} \right){\bf{k}};{\text{ }}{P_0}\left( {0,1,0} \right) \cr & {\text{Let }}t = 0,{\text{ then }}{\bf{r}}\left( 0 \right) \cr & {\bf{r}}\left( { - 2} \right) = \sin \left( 0 \right){\bf{i}} + \cosh \left( 0 \right){\bf{j}} + \left( {{{\tan }^{ - 1}}0} \right){\bf{k}} \cr & {\bf{r}}\left( { - 2} \right) = 0{\bf{i}} + {\bf{j}} + 0{\bf{k}} \cr & t = 0{\text{ at }}{P_0} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( 0 \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {\sin t{\bf{i}} + \cosh t{\bf{j}} + \left( {{{\tan }^{ - 1}}t} \right){\bf{k}}} \right] \cr & {\bf{r}}'\left( t \right) = \cos t{\bf{i}} + \sinh t{\bf{j}} + \frac{1}{{1 + {t^2}}}{\bf{k}} \cr & {\bf{r}}'\left( 0 \right) = \cos 0{\bf{i}} + \sinh 0{\bf{j}} + \frac{1}{{1 + {0^2}}}{\bf{k}} \cr & {\bf{r}}'\left( 0 \right) = {\bf{i}} + 0{\bf{j}} + {\bf{k}} \cr & {\text{The vector equation is}} \cr & {\bf{r}} = \left( {0{\bf{i}} + {\bf{j}} + 0{\bf{k}}} \right) + t\left( {{\bf{i}} + 0{\bf{j}} + {\bf{k}}} \right) \cr & {\bf{r}} = {\bf{j}} + t{\bf{i}} + t{\bf{k}} \cr & {\bf{r}} = t{\bf{i}} + {\bf{j}} + t{\bf{k}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.