Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 23

Answer

$${\bf{r}} = \left( { - {\bf{i}} + 2{\bf{j}}} \right) + t\left( {2{\bf{i}} + \frac{3}{4}{\bf{j}}} \right)$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left( {2t - 1} \right){\bf{i}} + \sqrt {3t + 4} {\bf{j}};{\text{ }}{P_0}\left( { - 1,2} \right) \cr & {\text{Let }}t = 0,{\text{ then }}{\bf{r}}\left( 0 \right) \cr & {\bf{r}}\left( 0 \right) = \left( {2\left( 0 \right) - 1} \right){\bf{i}} + \sqrt {3\left( 0 \right) + 4} {\bf{j}} \cr & {\bf{r}}\left( 0 \right) = - {\bf{i}} + 2{\bf{j}} \cr & t = 0{\text{ at }}{P_0} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( 0 \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {\left( {2t - 1} \right){\bf{i}} + \sqrt {3t + 4} {\bf{j}}} \right] \cr & {\bf{r}}'\left( t \right) = 2{\bf{i}} + \frac{3}{{2\sqrt {3t + 4} }}{\bf{j}} \cr & {\bf{r}}'\left( 0 \right) = 2{\bf{i}} + \frac{3}{{2\sqrt {3\left( 0 \right) + 4} }}{\bf{j}} \cr & {\bf{r}}'\left( 0 \right) = 2{\bf{i}} + \frac{3}{4}{\bf{j}} \cr & {\text{The vector equation is}} \cr & {\bf{r}} = \left( { - {\bf{i}} + 2{\bf{j}}} \right) + t\left( {2{\bf{i}} + \frac{3}{4}{\bf{j}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.