Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 7

Answer

$2\sin \sqrt t + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{\cos \sqrt t }}{{\sqrt t }}} dt,{\text{ }}u = \sqrt t \cr & {\text{Let }}u = \sqrt t \to du = \frac{1}{{2\sqrt t }}dt,{\text{ 2}}du = \frac{1}{{\sqrt t }}dt \cr & {\text{Applying the substitution}}{\text{, we obtain}} \cr & \int {\frac{{\cos \sqrt t }}{{\sqrt t }}} dt = \int {\cos u\left( {2du} \right)} \cr & = 2\int {\cos udu} \cr & {\text{Integrate }} \cr & = 2\sin u + C \cr & {\text{Write in terms of }}t,{\text{ substitute }}u = \sqrt t \cr & = 2\sin \sqrt t + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.