Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 25

Answer

$\frac{1}{3}{\left( {\ln x} \right)^3} + C$

Work Step by Step

$$\eqalign{ &\text{Let }I= \int {\frac{{{{\left( {\ln x} \right)}^2}}}{x}} dx \cr & {\text{Let }}u = \ln x,{\text{ then }}du = \frac{1}{x}dx \cr & {\text{Applying the substitution}}{\text{, we obtain}} \cr & I = \int {{u^2}} du \cr & {\text{Integrate apply the power rule }}\int {{u^n}du} = \frac{{{u^{n + 1}}}}{{n + 1}}{\text{ + C }} \cr & I = \frac{1}{3}{u^3} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}u = \ln x \cr & I= \frac{1}{3}{\left( {\ln x} \right)^3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.