Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 6

Answer

$ - \frac{2}{3}{\left( {1 + \frac{1}{x}} \right)^{3/2}} + C$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{x^2}}}\sqrt {1 + \frac{1}{x}} } dx \cr & {\text{Let }}u = 1 + \frac{1}{x} \to du = - \frac{1}{{{x^2}}}dx,{\text{ }} - du = \frac{1}{{{x^2}}}dx \cr & {\text{Applying the substitution}}{\text{, we obtain}} \cr & \int {\frac{1}{{{x^2}}}\sqrt {1 + \frac{1}{x}} } dx = \int {\overbrace {\sqrt {1 + \frac{1}{x}} }^{\sqrt u }} \overbrace {\frac{1}{{{x^2}}}dx}^{ - du} \cr & = \int {\sqrt u \left( { - du} \right)} \cr & = - \int {{u^{1/2}}du} \cr & {\text{Integrate by the power rule}} \cr & = - \frac{{{u^{1/2 + 1}}}}{{1/2 + 1}} + C \cr & = - \frac{{{u^{3/2}}}}{{3/2}} + C \cr & = - \frac{{2{u^{3/2}}}}{3} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}u = 1 + \frac{1}{x} \cr & = - \frac{2}{3}{\left( {1 + \frac{1}{x}} \right)^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.