Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 24

Answer

$\frac{1}{6}\ln \left| {3{t^2} + 6t - 5} \right| + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{t + 1}}{{3{t^2} + 6t - 5}}} dt \cr & {\text{Let }}u = 3{t^2} + 6t - 5,{\text{ then }}du = \left( {6t + 6} \right)dt \cr & du = 6\left( {t + 1} \right)dt \cr & \frac{1}{6}du = \left( {t + 1} \right)dt \cr & {\text{Applying the substitution}}{\text{, we obtain}} \cr & \int {\frac{{t + 1}}{{3{t^2} + 6t - 5}}} dt = \int {\frac{1}{u}\left( {\frac{1}{6}} \right)} du \cr & = \frac{1}{6}\int {\frac{1}{u}} du \cr & {\text{Integrate}} \cr & = \frac{1}{6}\ln \left| u \right| + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}u = 3{t^2} + 6t - 5 \cr & = \frac{1}{6}\ln \left| {3{t^2} + 6t - 5} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.