Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 21

Answer

$\frac{1}{{1 - {e^u}}} + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^u}}}{{{{\left( {1 - {e^u}} \right)}^2}}}} du \cr & {\text{Let }}z = 1 - {e^u},{\text{ then }}dz = - {e^u}du,{\text{ }} - dz = {e^u}du \cr & {\text{Apply the substitution}} \cr & \int {\frac{{{e^u}}}{{{{\left( {1 - {e^u}} \right)}^2}}}} du = \int {\frac{{ - dz}}{{{z^2}}}} \cr & = - \int {\frac{1}{{{z^2}}}} du \cr & = - \int {{z^{ - 2}}} du \cr & {\text{Integrate apply the power rule }}\int {{z^n}dz} = \frac{{{z^{n + 1}}}}{{n + 1}} + C{\text{ }} \cr & = - \left( {\frac{{{z^{ - 1}}}}{{ - 1}}} \right) + C \cr & = \frac{1}{z} + C \cr & {\text{Write in terms of }}u,{\text{ substitute }}z = 1 - {e^u} \cr & = \frac{1}{{1 - {e^u}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.