Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 13

Answer

$ - \frac{3}{\pi }\cos \left( {\frac{{\pi t}}{3}} \right) + C$

Work Step by Step

$$\eqalign{ & \int {\sin \left( {\frac{{\pi t}}{3}} \right)} dt \cr & {\text{Let }}u = \frac{{\pi t}}{3},{\text{ then }}du = \frac{\pi }{3}dt,{\text{ }}\frac{3}{\pi }du = dt \cr & {\text{Applying the substitution}}{\text{, we obtain}} \cr & \int {\sin \left( {\frac{{\pi t}}{3}} \right)} dt = \int {\sin u} \left( {\frac{3}{\pi }} \right)du \cr & = \frac{3}{\pi }\int {\sin u} du \cr & {\text{Integrating}} \cr & = \frac{3}{\pi }\left( { - \cos u} \right) + C \cr & {\text{Write in terms of }}t,{\text{ substitute }}u = \frac{{\pi t}}{3} \cr & = \frac{3}{\pi }\left( { - \cos \left( {\frac{{\pi t}}{3}} \right)} \right) + C \cr & = - \frac{3}{\pi }\cos \left( {\frac{{\pi t}}{3}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.