Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 20

Answer

$ - \frac{1}{5}{e^{ - 5r}} + C$

Work Step by Step

$$\eqalign{ & \int {{e^{ - 5r}}} dr \cr & {\text{Let }}u = - 5r,{\text{ then }}du = - 5dr,{\text{ }}dr = - \frac{1}{5}du \cr & {\text{Apply the substitution}} \cr & \int {{e^{ - 5r}}} dr = \int {{e^u}} \left( { - \frac{1}{5}du} \right) \cr & = - \frac{1}{5}\int {{e^u}} du \cr & {\text{Integrate}} \cr & = - \frac{1}{5}{e^u} + C \cr & {\text{Write in terms of }}r,{\text{ substitute }}u = - 5r \cr & = - \frac{1}{5}{e^{ - 5r}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.