Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 19

Answer

$ - \frac{{{{\cos }^4}\theta }}{4} + C$

Work Step by Step

$$\eqalign{ & \int {{{\cos }^3}\theta } \sin \theta d\theta \cr & {\text{Let }}u = \cos \theta ,{\text{ then }}du = - \sin \theta d\theta \cr & {\text{Apply the substitution}} \cr & \int {{{\cos }^3}\theta } \sin \theta d\theta = \int {{u^3}} \left( { - du} \right) \cr & = - \int {{u^3}} du \cr & {\text{Integrate apply the power rule }}\int {{u^n}du} = \frac{{{u^{n + 1}}}}{{n + 1}}{\text{ + C }} \cr & = - \frac{{{u^4}}}{4} + C \cr & {\text{Write in terms of }}\theta ,{\text{ substitute }}u = \cos \theta \cr & = - \frac{{{{\cos }^4}\theta }}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.