Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 425: 17

Answer

$\ln \left| {1 + \sin \theta } \right| + C$

Work Step by Step

$$\eqalign{ & \text{Let }I=\int {\frac{{\cos \theta }}{{1 + \sin \theta }}} d\theta \cr & {\text{Let }}u = 1 + \sin \theta ,{\text{ then }}du = \cos \theta d\theta \cr & {\text{Apply the substitution}} \cr & I = \int {\frac{{du}}{u}} \cr & {\text{Integrating}} \cr & I= \ln \left| u \right| + C \cr & {\text{Write in terms of }}\theta ,{\text{ substitute }}u = 1 + \sin\theta \cr & I = \ln \left| {1 + \sin\theta } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.