Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.5 - Multiplying with More Than One Term and Rationalizing Denominators - Exercise Set - Page 550: 100


$\displaystyle \frac{a-b}{a+2\sqrt{ab}+b}$

Work Step by Step

We lose the square roots in the numerator by applying the difference of squares formula: $(a\sqrt{x}+b\sqrt{y})(a\sqrt{x}-b\sqrt{y})=(a\sqrt{x})^{2}-(b\sqrt{y})^{2}$ $=a^{2}x-b^{2}y$ $\displaystyle \frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\color{red}{ \cdot\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}} }\qquad$ (rationalize) $=\displaystyle \frac{(\sqrt{a})^{2}-(\sqrt{b})^{2}}{(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{b})}$ ... the denominator is a square of a sum, $(A+B)^{2}=A^{2}+2AB+B^{2}$ $=\displaystyle \frac{a-b}{(\sqrt{a})^{2}+2\sqrt{ab}+(\sqrt{b})^{2}}$ $=\displaystyle \frac{a-b}{a+2\sqrt{ab}+b}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.