Answer
$\$4935$.
Work Step by Step
Step 1:- Translate the statement to form a equation.
Let the profit be $P$
and the number of product $N$.
Because $P$ varies directly as $N$, we have:
$\Rightarrow P=kN$ ...... (1)
Step 2:- Substitute the first set of values into the equation (1) to find the value of $k$.
The given values are $P=\$1175$ and $N=25$ products.
Substitute into the equation (1).
$\Rightarrow 1175=k(25)$
Divide both sides by $25$.
$\Rightarrow \frac{1175}{25}=\frac{25k}{25}$
Simplify.
$\Rightarrow 47=k$
Step 3:- Substitute the value of $k$ into the original equation.
Substitute $k=47$ into the equation (1).
$\Rightarrow P=47N$ ...... (2)
Step 4:- Solve the equation to find the required value.
Substitute $N=105$ into the equation (2).
$\Rightarrow P=47(105)$
Simplify.
$\Rightarrow P=4935$
Hence, the company's profit is $\$4935$.