Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 401: 58

Answer

$(2(1+\sqrt 3),5(1+2\sqrt 3));(2(1-\sqrt 3),5(1-2\sqrt 3))$

Work Step by Step

Given \begin{equation} \begin{aligned} & y=0.25 x^2+4 x-7 \\ & y=0.5 x^2+3 x-9 \end{aligned} \end{equation} Set the two equations equal and find the values of $x$. Use the values of $x$ to find the corresponding values of $y$ and write the solutions as points, $(x,y)$. \begin{equation} \begin{aligned} 0.5 x^2+3 x-9&=0.25 x^2+4 x-7 \\ (0.5-0.25) x^2+(3-4) x+(-9+7)&=0\\ \frac{0.25 x^2-x-2}{0.25}&=\frac{0}{0.25}\\ x^2-4 x-8&=0. \end{aligned} \end{equation} Use the method of completing the square: \begin{equation} \begin{aligned} x^2-4 x+2^2 & =8+2^2 \\ (x-2)^2 & =12 \\ (x-2)^2 & = \pm \sqrt{4 \cdot 3} \\ (x-2)^2 & = \pm 2 \sqrt{3}\\ x&=2 \pm 2 \sqrt{3}. \end{aligned} \end{equation} This gives \begin{equation} \begin{aligned} & x=2+2 \sqrt{3}=2(1+\sqrt 3) \\ & x=2-2 \sqrt{3}=2(1-\sqrt 3). \end{aligned} \end{equation} The corresponding $y$ values are: \begin{equation} \begin{aligned} & y=0.25(2+2\sqrt 3)^2+4(2+2\sqrt 3)-7=5+10\sqrt 3=5(1+2\sqrt 3) \\ & y=0.25(2-2\sqrt 3)^2+4(2-2\sqrt 3)-7=5-10\sqrt 3=5(1-2\sqrt 3). \end{aligned} \end{equation} Solution: $$(2(1+\sqrt 3),5(1+2\sqrt 3));(2(1-\sqrt 3),5(1-2\sqrt 3)).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.