Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 401: 55

Answer

$(-3,-24),(4,11)$

Work Step by Step

Given \begin{equation} \begin{aligned} & y=5 x-9 \\ & y=-2 x^2+7 x+15. \end{aligned} \end{equation} Set the two equations equal and find the values of $x$. Use the values of $x$ to find the corresponding values of $y$ and write the solutions as points, $(x,y)$. \begin{equation} \begin{aligned} -2 x^2+7 x+15&=5 x-9 \\ -2 x^2+7 x-5 x+15+9&=0 \\ \frac{-2 x^2+2 x+24}{(-2)}&=\frac{0}{(-2)} \\ x^2-x-12&=0. \end{aligned} \end{equation} Use the quadratic formula. \begin{equation} \begin{aligned} x & =\frac{-(-1) \pm \sqrt{(-1)^2-4 \cdot(1) \cdot(-12)}}{2 \cdot(1)} \\ & =\frac{1 \pm \sqrt{49}}{2} \\ x & = \frac{1\pm 7}{2} \\ x_1 &= \frac{1-7}{2}=-3 \\ x_2 &= \frac{1+7}{2}=4. \end{aligned} \end{equation} The corresponding $y$ values are: \begin{equation} \begin{aligned} & y=5(-3)-9=-24 \\ & y=5(4)-9=11. \end{aligned} \end{equation} Solution: $$(-3,-24),(4,11).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.