Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 401: 47

Answer

$\frac{7 -\sqrt{949}}{18}\approx -1.32$, $\frac{7 + \sqrt{949}}{18}\approx 2.10$

Work Step by Step

Given \begin{equation} -4.5 x^2+3.5 x+12.5=0. \end{equation} Rearrange the equation before applying the quadratic formula and determine the constants $a$, $b$, $c$: \begin{equation} \begin{aligned} \left(-4.5 x^2+3.5 x+12.5\right)\cdot (-10)&=0\cdot (-10)\\ 45x^2-35x-125&=0\\ ax^2+bx+c&=0\\ a =45\quad , b= -35\ , \quad c&= -125. \end{aligned} \end{equation} The quadratic formula gives: \begin{equation} \begin{aligned} x&=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\ x &=\frac{-(-35) \pm \sqrt{(-35)^2-4 \cdot 45(-125)}}{2 \cdot 45}\\ &=\frac{35 \pm \sqrt{23725}}{90}\\ &=\frac{35 \pm \sqrt{25\cdot 949}}{90}\\ &=\frac{35 \pm 5\sqrt{949}}{90}\\ &=5\cdot \frac{7\pm \sqrt{949}}{5\cdot 18}\\ &=\frac{7 \pm \sqrt{949}}{18}.. \end{aligned} \end{equation} The solution is: \begin{equation} x=\frac{7 -\sqrt{949}}{18}\approx -1.32,\quad x=\frac{7 + \sqrt{949}}{18}\approx 2.10. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.