Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 401: 56

Answer

$(-2,11), (6,-21)$

Work Step by Step

Given \begin{equation} \begin{aligned} & y=-4 x+3 \\ & y=x^2-8 x-9. \end{aligned} \end{equation} Set the two equations equal and find the values of $x$. Use the values of $x$ to find the corresponding values of $y$ and write the solutions as points, $(x,y)$. \begin{equation} \begin{aligned} x^2-8 x-9&=-4 x+3 \\ x^2-8 x+4 x-9-3&=0 \\ x^2-4 x-12&=0. \end{aligned} \end{equation} Use the quadratic formula. \begin{equation} \begin{aligned} x & =\frac{-(-4) \pm \sqrt{(-4)^2-4(1)(-12)}}{2(1)}\\ & =\frac{4 \pm \sqrt{64}}{2} \\ x & = \frac{4 \pm 8}{2}\\ x & =2-4=-2 \\ x & =2+4=6. \end{aligned} \end{equation} The corresponding $y$ values are: \begin{equation} \begin{aligned} & y=-4(-2)+3=11 \\ & y=-4(6)+3=-21. \end{aligned} \end{equation} Solution: $$(-2,11) \quad(6,-21).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.