Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 401: 50

Answer

$-\sqrt{15}$, $\sqrt{15}$

Work Step by Step

Given \begin{equation} 2 a^2+6 a-10=6 a+20. \end{equation} Rearrange the equation before applying the quadratic formula and determine the contsnats $a$, $b$, $c$: \begin{equation} \begin{aligned} 2 a^2+6 a-10&=6 a+20\\ 2 a^2+6 a-6a-10-20&=0\\ 2 a^2-30&=0\\ a =2, b= 0, c&= -30. \end{aligned} \end{equation} The quadratic formula gives: \begin{equation} \begin{aligned} x&=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\ a &=\frac{0 \pm \sqrt{0^2-4 \cdot 2 \cdot (-30)}}{2 \cdot 2}\\ &=\frac{0 \pm \sqrt{240} }{4}\\ &=\frac{0 \pm \sqrt{16\cdot 15} }{4}\\ &=\frac{0 \pm 4 \sqrt{ 15} }{4}\\ &=\pm \sqrt{15}. \end{aligned} \end{equation} The solution is \begin{equation} a=-\sqrt{15} ,\quad a=\sqrt{15}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.