Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 401: 46

Answer

$\frac{-9+\sqrt{489}}{6}$; $\frac{-9-\sqrt{489}}{6}$

Work Step by Step

Given the equation $$3 x^2+9 x-20=14.$$ Rearrange the equation before applying the quadratic formula, then determine the constants $a$, $b$, $c$. \begin{equation} \begin{aligned} 3 x^2+9 x-20 &=14\\ 3 x^2+9 x-20-14&=0\\ 3 x^2+9 x-34&=0\\ a^2x+bx+c&=0\\ a =3\quad , b= 9\ , \quad c&= -34. \end{aligned} \end{equation} The quadratic formula gives: \begin{equation} \begin{aligned} x&=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\ x &=\frac{-9 \pm \sqrt{9^2-4 \cdot 3(-34)}}{2 \cdot 3}\\ &=\frac{-9 \pm \sqrt{489}}{6}. \end{aligned} \end{equation} The solution is: \begin{equation} x=\frac{-9+\sqrt{489}}{6},\quad x=\frac{-9-\sqrt{489}}{6}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.