Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 400: 30

Answer

$g(x)=-6\left(x-\frac{5}{3}\right)^2-\frac{4}{3}$

Work Step by Step

Given the function $$g(x) =-6 x^2+20 x-18.$$ To complete the square of the function, we first factor out $-6$ so that the coefficient of the $x^2$ term is positive $1$. We then add and subtract half the square of the middle term and simplify: \begin{equation} \begin{aligned} g(x) & =-6 x^2+20 x-18 \\ & =-6\left(x^2-\frac{20}{6} x\right)-18 \\ & =-6\left[x^2-\frac{10 x}{3}+\left(\frac{10}{6}\right)^2\right]-18+6\left(\frac{10}{6}\right)^2 \\ & =-6\left(x-\frac{10}{6}\right)^2-18+6 \cdot \frac{100}{36} \\ & =-6\left(x-\frac{5}{3}\right)^2-18\cdot\frac{6}{6}+\frac{100}{6}\\ &=-6\left(x-\frac{5}{3}\right)^2-\frac{8}{6}\\ &=-6\left(x-\frac{5}{3}\right)^2-\frac{4}{3}. \end{aligned} \end{equation} Hence the function can be written: $$g(x)=-6\left(x-\frac{5}{3}\right)^2-\frac{4}{3}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.