Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 400: 20

Answer

$6-4 \sqrt{2}$; $6+4 \sqrt{2} $

Work Step by Step

Given \begin{equation} -0.25(x-6)^2+8 =0. \end{equation} Apply the square root property to solve: \begin{equation} \begin{aligned} \left(-0.25(x-6)^2+8\right)(-4) & =0(-4) \\ (x-6)^2-32 & =0 \\ (x-6)^2 & =32 \\ (x-6)^2 & =16 \cdot 2 \\ x-6 & = \pm \sqrt{16 \cdot 2} \\ x-6 & = \pm 4 \sqrt{2}. \end{aligned} \end{equation} This gives: \begin{equation} \begin{aligned} &\begin{aligned} x & =6-4 \sqrt{2} \\ & \approx 0.343 \end{aligned}\\ &\begin{aligned} x & =6+4 \sqrt{2} \\ & \approx 11.657 \end{aligned} \end{aligned} \end{equation} Check: \begin{equation} \begin{array}{r} -0.25(0.343-6)^2+8 \stackrel{?}{=}0 \\ -8+8\stackrel{?}{=}0 \\ 0=0\checkmark\\ -0.25(11.657-6)^2+8 \stackrel{?}{=}0 \\ -8+8\stackrel{?}{=}0 \\ 0=0\checkmark. \end{array} \end{equation} The solution is:$$x=6-4 \sqrt{2},\quad x=6+4 \sqrt{2}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.