Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 400: 24

Answer

$\frac{8-\sqrt{3}}{2}$; $\frac{8+\sqrt{3}}{2} $

Work Step by Step

Given \begin{equation} \frac{2}{7}(p-4)^2-\frac{3}{14}=0. \end{equation} Apply the square root property to solve: \begin{equation} \begin{aligned} \frac{2}{7}(p-4)^2-\frac{3}{14} & =0 \\ \frac{2}{7}(p-4)^2 \cdot \frac{7}{2} & =\frac{3}{14} \cdot \frac{7}{2} \\ (p-4)^2 & =\frac{3}{4} \\ p-4 & = \pm \frac{\sqrt{3}}{2} \\ p & =4 \pm \frac{\sqrt{3}}{2}. \end{aligned} \end{equation} This gives: \begin{equation} \begin{aligned} & p=4-\frac{\sqrt{3}}{2}=\frac{8-\sqrt{3}}{2} \\ & p=4-\frac{\sqrt{3}}{2}=\frac{8+\sqrt{3}}{2}. \end{aligned} \end{equation} Check: \begin{equation} \begin{aligned} \frac{2}{7}\left(\frac{8-\sqrt{3}}{2}-4\right)^2-\frac{3}{14} & \stackrel{?}{=}0 \\ \frac{2}{7}\cdot\frac{3}{4}-\frac{3}{14} & \stackrel{?}{=}0 \\ 0 & =0\checkmark\\ \frac{2}{7}\left(\frac{8+\sqrt{3}}{2}-4\right)^2-\frac{3}{14} & \stackrel{?}{=}0 \\ \frac{2}{7}\cdot\frac{3}{4}-\frac{3}{14} & \stackrel{?}{=}0 \\ 0 & =0\checkmark. \end{aligned} \end{equation} The solution is:$$p=\frac{8-\sqrt{3}}{2},\quad p=\frac{8+\sqrt{3}}{2}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.