Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 400: 25

Answer

$-13+\sqrt{199}$; $-13-\sqrt{199}$

Work Step by Step

Given \begin{equation} x^2+26 x=30. \end{equation} Apply the method of completing the square to solve for $x$. Make sure that the coefficient of the square term is one before adding half the square of the coefficient of the $x$ term to both sides. \begin{equation} \begin{aligned} x^2+26 x& =30\\ x^2+2\cdot 13x+13^2 & =30+13^2 \\ (x+13)^2 & =199 \\ x+13 & = \pm \sqrt{199} \\ x & =-13 \pm \sqrt{199}. \end{aligned} \end{equation} This gives: \begin{equation} \begin{aligned} & x=-13+\sqrt{199} \\ & \approx 1.1067 \\ & x=-13-\sqrt{199} \\ & \approx-27.1067 \end{aligned} \end{equation} Check: \begin{equation} \begin{aligned} (-13+\sqrt{199})^2+26(-13+\sqrt{199}) & \stackrel{?}{=}30 \\ 169-26\sqrt{199}+199-338+26\sqrt{199}& \stackrel{?}{=} 30\\ 30 & =30\checkmark\\\\ (-13-\sqrt{199})^2+26(-13-\sqrt{199}) & \stackrel{?}{=}30 \\ 169+26\sqrt{199}+199-338-26\sqrt{199}& \stackrel{?}{=} 30\\ 30 & =30\checkmark. \end{aligned} \end{equation} The solution is $$x=-13+\sqrt{199},\quad x=-13-\sqrt{199}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.