Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - Chapter Review Exercises - Page 400: 23

Answer

$-6-\sqrt{5}$; $-6+\sqrt{5} $

Work Step by Step

Given \begin{equation} \frac{1}{2}(c+6)^2-\frac{5}{2} =0. \end{equation} Apply the square root property to solve: \begin{equation} \begin{aligned} \frac{1}{2}(c+6)^2-\frac{5}{2} & =0 \\ \left(\frac{1}{2}(c+6)^2\right) 2 & =\left(\frac{5}{2}\right) \cdot 2 \\ (c+6)^2 & =5 \\ c+6 & = \pm \sqrt{5} \\ c & =-6 \pm \sqrt{5}. \end{aligned} \end{equation} This gives: \begin{equation} \begin{aligned} & c=-6-\sqrt{5} \approx-8.236 \\ & c=-6+\sqrt{5} \approx-3.764 \end{aligned} \end{equation} Check: \begin{equation} \begin{aligned} \frac{1}{2}(-6-\sqrt 5+6)^2-\frac{5}{2} &\stackrel{?}{=}0 \\ \frac{1}{2}(5)-\frac{5}{2}&\stackrel{?}{=}0\\ 0 & =0\checkmark\\ \frac{1}{2}(-6+\sqrt 5+6)^2-\frac{5}{2} &\stackrel{?}{=}0 \\ \frac{1}{2}(5)-\frac{5}{2}&\stackrel{?}{=}0\\ 0 & =0\checkmark. \end{aligned} \end{equation} The solution is:$$x=-6-\sqrt{5},\quad x=-6+\sqrt{5}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.