Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 678: 24

Answer

$(4,32), \quad \left(-\frac{14}{3}, \frac{2}{9}\right) $

Work Step by Step

Given $$\begin{cases} y=2 x^2+5 x-20 \\ y=-x^2+3 x+36. \end{cases}$$ Set the two functions equal and solve for $x$. \begin{equation} \begin{aligned} 2 x^2+5 x-20&=-x^2+3 x+36\\ 2 x^2+ x^2+5 x-3 x-20-36&= 0\\ 3 x^2+2 x-56&=0. \end{aligned} \end{equation} Apply the quadratic formula: \begin{equation} \begin{aligned} x&=\frac{-2 \pm \sqrt{2^2-4 \cdot 3(-56)}}{2 \cdot 3}\\ &=\frac{-2 \pm 26}{2 \cdot 3}\\ &=\frac{-1 \pm 13}{ 3}\\ \therefore x &= \frac{-1+13}{ 3}= 4\\ x &= \frac{-1-13}{ 3}= -\frac{14}{3}\\ y&=-(4)^2+3 \cdot (4)+36 = 32\\ y&=-\left(-\frac{14}{3}\right)^2+3 \cdot \left(-\frac{14}{3}\right)+36 \\ & = -\frac{196}{9}-14+36\\ &= \frac{-196+22\cdot 9}{9} = \frac{2}{9}. \end{aligned} \end{equation} The solution set is $$(4,32), \quad \left(-\frac{14}{3}, \frac{2}{9}\right) .$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.