Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 678: 17

Answer

$r=\frac{3}{2}+i \frac{3 \sqrt{3}}{2}$ $r = \frac{3}{2}-i \frac{3 \sqrt{3}}{2}$

Work Step by Step

Given \begin{equation} 4 r^2-12 r+36=0. \end{equation} This equation can be best solved by the quadratic formula. First factor out $4$: \begin{equation} \begin{aligned} 4(r^2-3 r+9)&=0 \\ r^2-3 r+9&= 0. \end{aligned} \end{equation} Apply the quadratic formula: \begin{equation} \begin{aligned} a & =1, b=-3, c=9 \\ r & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ r & =\frac{-(-3) \pm \sqrt{(-3)^2-4 \cdot 1 \cdot 9}}{2 \cdot 1}\\ &= \frac{3\pm \sqrt{-27}}{2}\\ &= \frac{3\pm i\sqrt{9\cdot 3}}{2}\\ & =\frac{3\pm i3\sqrt{ 3}}{2}\\ \Longrightarrow r & =\frac{3}{2}+i \frac{3 \sqrt{3}}{2} \\ r & =\frac{3}{2}-i \frac{3 \sqrt{3}}{2}. \end{aligned} \end{equation} Check \begin{equation} \begin{aligned} \left( \frac{3}{2}+i \frac{3 \sqrt{3}}{2} \right)^2-3\left( \cdot \frac{3}{2}+i \frac{3 \sqrt{3}}{2}\right)+9& \stackrel{?}{=} 0 \\ 0 & =0 \checkmark \\ \left( \frac{3}{2}-i \frac{3 \sqrt{3}}{2} \right)^2-3\left( \cdot \frac{3}{2}-i \frac{3 \sqrt{3}}{2}\right)+9& \stackrel{?}{=} 0 \\ 0 & =0 \checkmark. \end{aligned} \end{equation} The solution is \begin{equation} \begin{aligned} r&=\frac{3}{2}+i \frac{3 \sqrt{3}}{2}\\ r& = \frac{3}{2}-i \frac{3 \sqrt{3}}{2}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.