Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 678: 15

Answer

$b= \frac{64}{3}$

Work Step by Step

Given \begin{equation} \frac{2}{3}(b+5)=\frac{5}{6} b-\frac{2}{9}. \end{equation} Rewrite each side as a fraction, then solve for $b$: \begin{equation} \begin{aligned} \frac{2}{3}(b+5)&=\frac{5}{6} b-\frac{2}{9}\\ \frac{2}{3} b+\frac{10}{3}&= \frac{5}{6} b-\frac{2}{9} \\ \frac{10}{3}+\frac{2}{9}&=\frac{5}{6} b-\frac{2}{3} b \\ \frac{10\cdot 3+ 2}{9}&= \frac{5b-2\cdot 2b}{6}\\ \frac{32}{9}&= \frac{b}{6}\\ \frac{32}{9}\cdot 6& = b\\ \frac{64}{3}& = b. \end{aligned} \end{equation} Check \begin{equation} \begin{aligned} \frac{2}{3}\cdot\left(\frac{64}{3}+5\right)& \stackrel{?}{=}\frac{5}{6}\cdot \frac{64}{3}-\frac{2}{9}\\ \frac{158}{9}& =\frac{158}{9}\quad \textbf{True} \end{aligned} \end{equation} The solution is $b= \frac{64}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.