Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 678: 23

Answer

$(1,-2), \quad \left(-\frac{31}{12}, -\frac{139}{48}\right) $

Work Step by Step

Given $$\begin{cases} y=3 x^2+5 x-10 \\ y=\frac{1}{4} x-\frac{9}{4}. \end{cases}$$ Set the two functions equal and solve for $x$. \begin{equation} \begin{aligned} \left(3 x^2+5 x-10 \right)\cdot 4&=\left(\frac{1}{4} x-\frac{9}{4}\right)\cdot 4\\ 12x^2+20x-40&= x-9\\ 12x^2+19x-31&=0. \end{aligned} \end{equation} Apply the quadratic formula: \begin{equation} \begin{aligned} x&=\frac{-19 \pm \sqrt{19^2-4 \cdot 12(-31)}}{2 \cdot 12}\\ &=\frac{-19 \pm 43}{24}\\ \therefore x &= \frac{-19+43}{24}= 1\\ x&= \frac{-19-43}{24}= -\frac{31}{12}\\ y&=\frac{1}{4} \cdot 1-\frac{9}{4} = -2\\ y&=\frac{1}{4} \cdot \left( -\frac{31}{12} \right)-\frac{9}{4} = -\frac{139}{48}. \end{aligned} \end{equation} The solution set is $(1,-2), \quad \left(-\frac{31}{12}, -\frac{139}{48}\right) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.