Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 678: 20

Answer

$d=-7$, $d= 0$ , $d= 9$.

Work Step by Step

Given \begin{equation} 2 d^3-4 d^2-63 d+124=63 d+124. \end{equation} This equation can be best solved by factoring after bringing it to the standard form. \begin{equation} \begin{aligned} 2 d^3-4 d^2-63 d+124&=63 d+124\\ 2 d^3-4 d^2-63 d&=63 d\\ 2 d^3-4 d^2-126 d&=0\\ 2d( d^2-2 d-63 )=0. \end{aligned} \end{equation} This gives \begin{equation} \begin{aligned} d&=0\\ d^2-2 d-63&=0\\ d^2-9d+7d-63&=0\\ d(d-9 )+7(d-9)=0\\ (d+7)(d-9)&= 0\\ \therefore d&= 0 && d= -7 && d= 9. \end{aligned} \end{equation} Check \begin{equation} \begin{aligned} 2\cdot (0)^3-4\cdot (0)^2-63\cdot(0)+124 &\stackrel{?}{=}63 \cdot 0+124\\ 124&= 124\ \textbf{True}\\ 2\cdot (-7)^3-4\cdot (-7)^2-63\cdot(-7)+124 &\stackrel{?}{=}63\cdot(-7)+124\\ -317&= -317\ \textbf{True}\\ 2\cdot (9)^3-4\cdot (9)^2-63\cdot(9)+124 &\stackrel{?}{=}63\cdot 9+124\\ 691&= 691\ \textbf{True} \end{aligned} \end{equation} The solution is $$d=-7,\quad d= 0,\quad d= 9.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.