Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 678: 13

Answer

$g=7;\quad x = - \frac{111}{17}$

Work Step by Step

Given \begin{equation} 3.4 g^2-1.6 g-8.4=147. \end{equation} This equation can be best solved by the quadratic formula. First bring the equation to the standard form: \begin{equation} \begin{aligned} ax^2+bx+c&=0\\ 3.4 g^2-1.6 g-8.4&=147 \\ \left(3.4 g^2-1.6 g-155.4\right)\cdot 10&=0\cdot 10\\ 34g^2-16g-1554&= 0. \end{aligned} \end{equation} Apply the quadratic formula: \begin{equation} \begin{aligned} a & =34, b=-16, c=-1554 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ g & =\frac{-(-16) \pm \sqrt{(-16)^2-4 \cdot 34(-1554)}}{2 \cdot 34}\\ & =\frac{16 \pm 460}{4\cdot 17}\\ & = \frac{4\pm115}{17}\\ \Longrightarrow g & =\frac{4+117}{17} \\ & =7 \\ g & =\frac{4+117}{17} \\ & =-\frac{111}{17} \\ & \approx -6.52941 \end{aligned} \end{equation} Check \begin{equation} \begin{aligned} 3.4 \cdot 7^2-1.6\cdot 7-8.4& \stackrel{?}{=} 147 \\ 147 & =147 \checkmark \\ 3.4 \cdot (-6.529)^2-1.6\cdot (-6.529)-8.4& \stackrel{?}{=} 147 \\ 147 & =147 \checkmark. \end{aligned} \end{equation} The solution is \begin{equation} \begin{aligned} g&=7\\ g& = - \frac{111}{17}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.