Answer
$\frac{11\sqrt[3] 3}{10}$
Work Step by Step
$\frac{\sqrt[3] 81}{10} + \sqrt[3] \frac{192}{125}$
Using properties of radicals,
$= \frac{\sqrt[3] 81}{10} +\frac{\sqrt[3] 192}{\sqrt[3] 125}$
$= \frac{\sqrt[3] (27 \times 3)}{10} +\frac{\sqrt[3](3 \times 64) }{\sqrt[3]5^{3}}$
$= \frac{\sqrt[3]( 3 ^{3} \times 3)}{10} +\frac{\sqrt[3](3 \times 4^{3}) }{5}$
$= \frac{3 \sqrt[3] 3}{10} +\frac{ 4 \sqrt[3]3 }{5}$
Taking LCD,
$= \frac{ 3\sqrt[3] 3 + 8 \sqrt[3]3 }{10} $
$= \frac{11 \sqrt[3] 3}{10} $