Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Appendix - Mathematical Induction and Other Forms of Proofs - Exercises - Page A6: 9

Answer

See the proof below.

Work Step by Step

Consider the following statement: $$a^0+a^1+a^2+a^3+\ldots+a^n=\displaystyle\frac{1-a^{n+1}}{1-a}$$ for all integers $n>0$, $a\neq 1$. We will use mathematical induction to prove that the statement is true. $\textbf{1.}$ We have that the statement is true for $n=1$ and for all $a\neq 1$ since $$a^0+a^1=1+a=\displaystyle\frac{\left(1+a\right)\left(1-a\right)}{1-a}=\displaystyle\frac{1-a^2}{1-a}=\displaystyle\frac{1-a^{1+1}}{1-a}.$$ $\textbf{2.}$ Suppose the statement is true for $n=k$, that is, suppose that $$a^0+a^1+a^2+a^3+\ldots+a^k=\displaystyle\frac{1-a^{k+1}}{1-a}$$ for all $a\neq 1$. Then, for any given $a\neq 1$, adding $a^{k+1}$ to both sides of the previous equality gives us that $$a^0+a^1+a^2+a^3+\ldots+a^k+a^{k+1}=\displaystyle\frac{1-a^{k+1}}{1-a}+a^{k+1}$$ Thus, since $$\displaystyle\frac{1-a^{k+1}}{1-a}+a^{k+1}=\displaystyle\frac{1-a^{k+1}}{1-a}+\displaystyle\frac{\left(1-a\right)a^{k+1}}{1-a}=\displaystyle\frac{1-a^{k+1}+a^{k+1}-a^{k+2}}{1-a}=$$ $$\displaystyle\frac{1-a^{k+2}}{1-a}=\displaystyle\frac{1-a^{\left(k+1\right)+1}}{1-a}$$ we have that $$a^0+a^1+a^2+a^3+\ldots+a^k+a^{k+1}=\displaystyle\frac{1-a^{\left(k+1\right)+1}}{1-a}$$ Therefore, the statement holds for $n=k+1$ whenever it is true for $n=k$. Hence, the mathematical induction principle guarantees that the statement is true for all integers $n>0$ and $a\neq 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.