Answer
See the proof below.
Work Step by Step
Let $S=\left\{\textbf{u},\textbf{v}\right\}$ be a linearly independent set in some vector space $V$ and let $S'=\left\{\textbf{u}+\textbf{v},\textbf{u}-\textbf{v}\right\}$.
We will prove by contradiction that $S'$ is linearly independent.
$\textbf{Proof:}$ Suppose that $S'$ is a linearly dependent set. Then, there exists scalars $a$ and $b$ not both $0$ such that
$$a\left(\textbf{u}+\textbf{v}\right)+b\left(\textbf{u}-\textbf{v}\right)=\textbf{0}.$$
Now, since
$$a\left(\textbf{u}+\textbf{v}\right)+b\left(\textbf{u}-\textbf{v}\right)=a\textbf{u}+a\textbf{v}+b\textbf{u}+b\left(-\textbf{v}\right)=$$
$$a\textbf{u}+b\textbf{u}+a\textbf{v}+b\left(\left(-1\right)\textbf{v}\right)=\left(a+b\right)\textbf{u}+a\textbf{v}+\left(b\left(-1\right)\right)\textbf{v}=$$
$$\left(a+b\right)\textbf{u}+a\textbf{v}+\left(-b\right)\textbf{v}=\left(a+b\right)\textbf{u}+\left(a+\left(-b\right)\right)\textbf{v}=$$
$$\left(a+b\right)\textbf{u}+\left(a-b\right)\textbf{v}$$
we have that
$$\left(a+b\right)\textbf{u}+\left(a-b\right)\textbf{v}=\textbf{0}.$$
_____________________________________________________________________________
Let's take a look at the linear system
$$\left\{\begin{array}{cc} c_1+c_2=0 \\ c_1-c_2=0\end{array}\right..$$
Adding the two equations in the system we obtain that $c_1+c_2+c_1-c_2=0$ which gives us that $2c_1=0$ and therefore, $c_1=0$.
From $c_1+c_2=0$ and $c_1=0$ we obtain that $0+c_2=0$ and therefore, $c_2=0$.
Thus, we have shown that the linear system $\left(0,0\right)$ is the only solution of the system above. Thus, since $a$ and $b$ are not both $0$, we have that $\left(a,b\right)$ is not a solution of the system which implies that $a+b$ and $a-b$ cannot both be $0$ and then, since
$$\left(a+b\right)\textbf{u}+\left(a-b\right)\textbf{v}=\textbf{0}$$
this contradicts the fact that $S$ is linearly independent.
Hence, $S'$ is a linearly independent set.