Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Appendix - Mathematical Induction and Other Forms of Proofs - Exercises - Page A6: 6

Answer

$\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}+\displaystyle\frac{1}{3\cdot 4}+\ldots+\displaystyle\frac{1}{n\left(n+1\right)}=\displaystyle\frac{n}{n+1}$. See the proof below.

Work Step by Step

Consider the sequence $\displaystyle\frac{1}{1\cdot 2},\displaystyle\frac{1}{2\cdot 3},\displaystyle\frac{1}{3\cdot 4},\displaystyle\frac{1}{4\cdot 5},\ldots$ For each natural number $n$ let $$S_n=\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}+\displaystyle\frac{1}{3\cdot 4}+\ldots+\displaystyle\frac{1}{n\left(n+1\right)}.$$ Let's calculate a few values of $S_n$ so we can look for a pattern and then propose a formula for $S_n$. Observe that $$S_1=\displaystyle\frac{1}{1\cdot 2}=\displaystyle\frac{1}{2}=\displaystyle\frac{1}{1+1}$$ $$S_2=\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}=\displaystyle\frac{1}{2}+\displaystyle\frac{1}{6}=\displaystyle\frac{2}{3}=\displaystyle\frac{2}{2+1}$$ and $$S_3=\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}+\displaystyle\frac{1}{3\cdot 4}=\displaystyle\frac{1}{2}+\displaystyle\frac{1}{6}+\displaystyle\frac{1}{12}=\displaystyle\frac{3}{4}=\displaystyle\frac{3}{3+1}.$$ The previous pattern leads us to suspect that for any positive integer it is true that $$S_n=\displaystyle\frac{n}{n+1}.$$ We will use mathematical induction to show that our guess is correct. _____________________________________________________________________________ In order to show that the formula holds we must show that it is true for $n=1$ and that if it is true for $n=k$ then, it is true for $n=k+1$. $\textbf{1.}$ The formula holds for $n=1$ since $S_1=\displaystyle\frac{1}{1\cdot 2}=\displaystyle\frac{1}{2}=\displaystyle\frac{1}{1+1}$. $\textbf{2.}$ Suppose the formula holds for $n=k$, that is, suppose that $$S_k=\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}+\displaystyle\frac{1}{3\cdot 4}+\ldots+\displaystyle\frac{1}{k\left(k+1\right)}=\displaystyle\frac{k}{k+1}.$$ Then, adding $\displaystyle\frac{1}{\left(k+1\right)\left(\left(k+1\right)+1\right)}$ to both sides of the equality $$\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}+\displaystyle\frac{1}{3\cdot 4}+\ldots+\displaystyle\frac{1}{k\left(k+1\right)}=\displaystyle\frac{k}{k+1}$$ gives us that $$\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}+\displaystyle\frac{1}{3\cdot 4}+\ldots+\displaystyle\frac{1}{k\left(k+1\right)}+\displaystyle\frac{1}{\left(k+1\right)\left(\left(k+1\right)+1\right)}=$$ $$\displaystyle\frac{k}{k+1}+\displaystyle\frac{1}{\left(k+1\right)\left(\left(k+1\right)+1\right)}$$ Now, observe that $$\displaystyle\frac{k}{k+1}+\displaystyle\frac{1}{\left(k+1\right)\left(\left(k+1\right)+1\right)}=\displaystyle\frac{k}{k+1}+\displaystyle\frac{1}{\left(k+1\right)\left(k+2\right)}=$$ $$\displaystyle\frac{k\left(k+2\right)}{\left(k+1\right)\left(k+2\right)}+\displaystyle\frac{1}{\left(k+1\right)\left(k+2\right)}=\displaystyle\frac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}=$$ $$\displaystyle\frac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\displaystyle\frac{k+1}{k+2}=\displaystyle\frac{k+1}{\left(k+1\right)+1}.$$ Thus, $$S_{k+1}=\displaystyle\frac{1}{1\cdot 2}+\displaystyle\frac{1}{2\cdot 3}+\displaystyle\frac{1}{3\cdot 4}+\ldots+\displaystyle\frac{1}{k\left(k+1\right)}+\displaystyle\frac{1}{\left(k+1\right)\left(\left(k+1\right)+1\right)}=\displaystyle\frac{k+1}{\left(k+1\right)+1}$$ and therefore, the formula holds for $n=k+1$ whenever it is true for $n=k$. Hence, the mathematical induction principle guarantees that the formula is true for every positive integer $n$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.