Answer
See the proof below.
Work Step by Step
In order to show that the formula holds we must show that it is true for $n=1$ and that if its is true for $n=k$ then, it is true for $n=k+1$.
$\textbf{1.}$ The formula holds for $n=1$ since
$$\left(1+\displaystyle\frac{1}{1}\right)=1+1.$$
$\textbf{2.}$ Suppose the formula holds for $n=k$, that is, suppose that
$$\left(1+\displaystyle\frac{1}{1}\right)\left(1+\displaystyle\frac{1}{2}\right)\left(1+\displaystyle\frac{1}{3}\right)\ldots\left(1+\displaystyle\frac{1}{k}\right)=k+1.$$
Then, multiplying both sides of this equality by $\left(1+\displaystyle\frac{1}{k+1}\right)$ gives us that
$$\left(1+\displaystyle\frac{1}{1}\right)\left(1+\displaystyle\frac{1}{2}\right)\left(1+\displaystyle\frac{1}{3}\right)\ldots\left(1+\displaystyle\frac{1}{k}\right)\left(1+\displaystyle\frac{1}{k+1}\right)=\left(k+1\right)\left(1+\displaystyle\frac{1}{k+1}\right).$$
Now, observe that
$$\left(k+1\right)\left(1+\displaystyle\frac{1}{k+1}\right)=\left(k+1\right)+\left(k+1\right)\left(\displaystyle\frac{1}{k+1}\right)=\left(k+1\right)+1.$$
Thus,
$$\left(1+\displaystyle\frac{1}{1}\right)\left(1+\displaystyle\frac{1}{2}\right)\left(1+\displaystyle\frac{1}{3}\right)\ldots\left(1+\displaystyle\frac{1}{k}\right)\left(1+\displaystyle\frac{1}{k+1}\right)=\left(k+1\right)+1$$
and therefore, the formula holds for $n=k+1$ whenever it is true for $n=k$.
Hence, the mathematical induction principle guarantees that the formula is true for every positive integer $n$.