Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.7 Change of Basis - Problems - Page 318: 14

Answer

$(\frac{-34}{3},12,\frac{-55}{3},\frac{56}{3})$.

Work Step by Step

We know that $a\begin{bmatrix} -1 & 1\\ 0 & 1 \end{bmatrix}+b\begin{bmatrix} 1 & 3\\ -1 & 0 \end{bmatrix}+c\begin{bmatrix} 1 & 0\\ 1 & 2 \end{bmatrix}+d\begin{bmatrix} 0 & -1\\ 2 & 3 \end{bmatrix}=\begin{bmatrix} 5 & 6\\ 7 & 8 \end{bmatrix}$. Thus $\begin{bmatrix} -a+b+c & a+3b-d\\ -b+c+2d & a+2c+3d \end{bmatrix}=\begin{bmatrix} 5 & 6\\ 7 & 8 \end{bmatrix}$ Thus $-a+b+c=5\\ a+3b-d=6\\ -b+c+2d=7\\ a+2c+3d=8$ Thus $-a+b+c+(a+3b-d)+4(-b+c+2d)=39 \rightarrow 5c+7d=39\\ -a+b+c+(-b+c+2d)+(a+3b-d)=20 \rightarrow 4c+5d=20\\$ Thus $4(5c+7d)-5(4c+5d)=56 \rightarrow 3d =56 \rightarrow d=\frac{56}{3}\\ 4c+5\frac{56}{3}=20 \rightarrow c=\frac{-55}{3}\\ -b-\frac{55}{3}+2\frac{56}{3}=7 \rightarrow b=12\\ a+3.12-\frac{56}{3}=6 \rightarrow a=\frac{-34}{3}$ Thus the vector is $(\frac{-34}{3},12,\frac{-55}{3},\frac{56}{3})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.