Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 38

Answer

$x_1=A^{-1}e_1=\begin{bmatrix} 25 \\ 3\\ -7 \end{bmatrix} $ $x_2=A^{-1}e_2=\begin{bmatrix} -7 \\ -1\\ 2 \end{bmatrix} $ $x_3=A^{-1}e_3=\begin{bmatrix} 4 \\ 1\\ -1 \end{bmatrix} $

Work Step by Step

Use the GaussJordan Technique to determine the inverse of A: $\begin{bmatrix} 1 & -1 & 3|1 & 0 & 0\\ 4&-3 & 13 | 0 &1 & 0\\ 1 & 1& 4 | 0 & 0 & 1 \end{bmatrix} \approx^1 \begin{bmatrix} 1&4 & 2| 0 &1 & 0\\ -2 & -3 & 1| 1 &0 & 0\\ 0& 5& 3| 0 &0 & 1 \end{bmatrix} \approx^2\begin{bmatrix} 1&-1 & 3| 1 &0 & 0\\ 0 & 1 & 1| -4 &1 & 0\\ 0& 2& 1| -1 &0 & 1 \end{bmatrix} \approx^3 \begin{bmatrix} 1&-1 & 3| 1 &0 & 0\\ 0 & 1 & 1| -4&1 & 0\\ 0& 0& -1| 7 &-2 & 1 \end{bmatrix} \approx^4 \begin{bmatrix} 1&-1 & 3| 1 &0& 0\\ 0 & 1 & 1| -4&1 & 0\\ 0& 0& 1 | -7 & 2& -1 \end{bmatrix} \approx^5 \begin{bmatrix} 1&0 &4| -3&1 & 0\\ 0 & 1 & 1| -4 &1 & 0\\ 0& 0& 1 | -7 & 2 & -1 \end{bmatrix} \approx^6 \begin{bmatrix} 1&0 & 0| 25 &-7 & 4\\ 0 & 1 & 0| 3&-1 & 1\\ 0& 0& 1 | -7& 2& -1 \end{bmatrix}$ $1.A{12}(-4),A_{13}(-1)$ $2.A_{23}(-2)$ $3.M_3(-1)$ $4.A_{21}(1)$ $5. A_{31}(-4),A_{32}(-1)$ Hence here, $A^{-1}=\begin{bmatrix} 25 &-7 & 4\\ 3&-1 & 1\\ -7& 2& -1 \end{bmatrix} $ Since $Ax_i=e_i$ hence here $x_1=A^{-1}e_1=\begin{bmatrix} 25 \\ 3\\ -7 \end{bmatrix} $ $x_2=A^{-1}e_2=\begin{bmatrix} -7 \\ -1\\ 2 \end{bmatrix} $ $x_3=A^{-1}e_3=\begin{bmatrix} 4 \\ 1\\ -1 \end{bmatrix} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.