Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 21

Answer

The solution of the system is $\frac{21}{13},\frac{10}{13},\frac{-2}{13}$

Work Step by Step

Given: $A=\begin{bmatrix} 5&-1 & 2\\ -2&6&9\\ -7& 5&-3 \end{bmatrix} $ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 5&-1 & 2|7 \\ -2&6&9 |0\\ -7& 5&-3 |-7 \end{bmatrix} \approx^1\begin{bmatrix} 1&11 & 20|7 \\ -2&6&9 |0\\ -7& 5&-3 |-7 \end{bmatrix} \approx^2\begin{bmatrix} 1&11 & 20|7 \\ 0&28&49 |14\\ 0& 82&137 |42 \end{bmatrix}\approx^3 \begin{bmatrix} 1&11 & 20|7 \\ 0&1&\frac{7}{4} |\frac{1}{2}\\ 0& 82&137 |42 \end{bmatrix} \approx^4 \begin{bmatrix} 1&11 & 20|7 \\ 0&1&\frac{7}{4} |\frac{1}{2}\\ 0& 0&-\frac{13}{2} |1 \end{bmatrix} \approx^5 \begin{bmatrix} 1&11 & 20|7 \\ 0&1&\frac{7}{4} |\frac{1}{2}\\ 0& 0&1 |-\frac{2}{13} \end{bmatrix}$ $1.A_{21}(2)$ $2.A_{12}(2),A_{13}(7)$ $3. M_2(\frac{1}{8})$ $4.A_{23}(-82)$ $3. M_2(\frac{-2}{3})$ The equivalent system for this matrix is now: $x_3=\frac{-2}{13}$ $x_2+\frac{7}{4}x_3 =\frac{1}{2} \rightarrow x_2=\frac{10}{13}$ $x_1-2x_2+x_3=3 \rightarrow x_1=\frac{21}{13}$ The solution of the system is $\frac{21}{13},\frac{10}{13},\frac{-2}{13}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.