Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 23

Answer

No solution

Work Step by Step

Given: $A=\begin{bmatrix} 1&-2 & -1 & 3\\ -2 & 4 & 5 & -5\\ 3& -6&-6&8 \end{bmatrix}$ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1&-2 & -1 & 3 | 0\\ -2 & 4 & 5 & -5 | 3\\ 3& -6&-6&8 | 2 \end{bmatrix} \approx^1\begin{bmatrix} 1&-2 & -1 & 3 | 0\\ 0 & 0 & 3 & 1 | 3\\ 0& 0&-3&-1 | 2 \end{bmatrix} \approx^2 \begin{bmatrix} 1&-2 & -1 & 3 | 0\\ 0 & 0 & 3 & 1 | 3\\ 0& 0&0&0| 5 \end{bmatrix} \approx^3 \begin{bmatrix} 1&-2 & -1 & 3 | 0\\ 0 & 0 & 1 &\frac{1}{3} | 1\\ 0& 0&0&0| 1 \end{bmatrix}$ $1.A_{12}(2),A_{13}(-3)$ $2.A_{23}(1)$ $3. M_2(\frac{1}{3}),M_3(\frac{1}{5})$ The equivalent system for this matrix is now: $0x_1+0x_2+0x_3=1$ Hence, the system has no solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.