Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 37

Answer

See answers below

Work Step by Step

a) $\begin{bmatrix} -2 & -3 & 1\\ 1&4 & 2\\ 0 & 5& 3 \end{bmatrix} \approx^1 \begin{bmatrix} 1&4 & 2\\ -2 & -3 & 1\\ 0& 5& 3 \end{bmatrix} \approx^2\begin{bmatrix} 1&4 & 2\\ 0 & 5 & 5\\ 0& 5& 3 \end{bmatrix} \approx^3 \begin{bmatrix} 1&4 & 2\\ 0 & 5 & 5\\ 0& 0& -2 \end{bmatrix} \approx^4 \begin{bmatrix} 1&4 & 2\\ 0 & 1 & 1\\ 0& 0& 1 \end{bmatrix}$ $1.P_{12}(-1)$ $2.A_{12}(2)$ $3.A_{23}(-1)$ $4.M_2(\frac{1}{5}),M_3(-\frac{1}{2})$ b) $rank(A)=3$ c) Use the GaussJordan Technique to determine the inverse of A: $\begin{bmatrix} -2 & -3 & 1|1 & 0 & 0\\ 1&4 & 2 | 0 &1 & 0\\ 0 & 5& 3 | 0 & 0 & 1 \end{bmatrix} \approx^1 \begin{bmatrix} 1&4 & 2| 0 &1 & 0\\ -2 & -3 & 1| 1 &0 & 0\\ 0& 5& 3| 0 &0 & 1 \end{bmatrix} \approx^2\begin{bmatrix} 1&4 & 2| 0 &1 & 0\\ 0 & 5 & 5| 1 &2 & 0\\ 0& 5& 3| 0 &0 & 1 \end{bmatrix} \approx^3 \begin{bmatrix} 1&4 & 2| 0 &1 & 0\\ 0 & 5 & 5| 1&2 & 0\\ 0& 0& -2| -1 &-2 & 1 \end{bmatrix} \approx^4 \begin{bmatrix} 1&4 & 2| 0 &1 & 0\\ 0 & 1 & 1| \frac{1}{5} &\frac{2}{5} & 0\\ 0& 0& 1 | \frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix} \approx^5 \begin{bmatrix} 1&0 & -2| \frac{-4}{5} &\frac{-3}{5} & 0\\ 0 & 1 & 1| \frac{1}{5} &\frac{2}{5} & 0\\ 0& 0& 1 | \frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix} \approx^6 \begin{bmatrix} 1&0 & 0| \frac{1}{5} &\frac{7}{5} & -1\\ 0 & 1 & 0| \frac{-3}{10} &\frac{-3}{5} & \frac{1}{2}\\ 0& 0& 1 | \frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$ $1.P_{12}(-1)$ $2.A_{12}(2)$ $3.A_{23}(-1)$ $4.M_2(\frac{1}{5}),M_3(-\frac{1}{2})$ $5.A_{21}(-4)$ $6.A_{31}(2),A_{32}(-1)$ Hence here, $A^{-1}=\begin{bmatrix} \frac{1}{5} &\frac{7}{5} & -1\\ \frac{-3}{10} &\frac{-3}{5} & \frac{1}{2}\\ {1}{2} & 1 & -\frac{1}{2} \end{bmatrix} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.