Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 25

Answer

The solution of the system is $S=\{2t-2s+3,s-t+1,s,2+2t,t\}$

Work Step by Step

Given: $A=\begin{bmatrix} 1 & 1 & 1& 1 &-3\\ 1 & 1 & 1& 2&-5\\ 2 & 3 & 1 & 4 & -9 \\ 2 & 2 &2 &3 & -8 \end{bmatrix}$ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1 & 1 & 1& 1 &-3|6\\ 1 & 1 & 1& 2&-5|8\\ 2 & 3 & 1 & 4 & -9|17 \\ 2 & 2 &2 &3 & -8|14 \end{bmatrix}\approx^1\begin{bmatrix} 1 & 1 & 1& 1 &-3|6\\ 0 & 0 & 0& 1&-2|2\\ 0 & 1 & -1 & 2 & -3|5 \\ 0 & 0 &0 &-1 & 2|-2 \end{bmatrix} \approx^2\begin{bmatrix} 1 & 1 & 1& 1 &-3|6\\ 0 & 1 & -1 & 2 & -3|5\\ 0 & 0 & 0& 1&-2|2 \\ 0 & 0 &0 &-1 & 2|-2 \end{bmatrix} \approx^3 \begin{bmatrix} 1 & 1 & 1& 1 &-3|6\\ 0 & 1 & -1 & 2 & -3|5\\ 0 & 0 & 0& 1&-2|2 \\ 0 & 0 &0 &0& 0|0 \end{bmatrix} $ $1.A_{12}(-1),A_{13}(-2),A_{14}(-2)$ $2. P_{23}$ $3.A_{34}(1)$ The equivalent system for this matrix is now: $x_1+x_2+x_3+x_4-3x_5=6$ $x_2-x_3+2x_4-3x_5=5$ $x_3=s$ $x_4-2x_5=2$ $x_5=t$ There is one free variable, which we take to be $x_3 = s, x_5=t$, where s and t can assume any complex value. Applying back substitution yields: $x_3=s$ $x_4-2t=2 \rightarrow x_4=2+2t$ $x_5=t$ $x_2-s+2(2+2t)-3t=5 \rightarrow x_2=s-t+1$ $x_1+s-t+1+s+2+2t-3t=6 \rightarrow x_1=2t-2s+3$ The solution of the system is $S=\{2t-2s+3,s-t+1,s,2+2t,t\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.