Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 22

Answer

The solution of the system is $-a+5,a-2,a$

Work Step by Step

Given: $A=\begin{bmatrix} 1&2 & -1\\ 1&0&1\\ 4& 4&0 \end{bmatrix} $ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1&2 & -1|1\\ 1&0&1|5\\ 4& 4&0|12 \end{bmatrix} \approx^1\begin{bmatrix} 1&2 & -1|1\\ 0&-2&2|4\\\ 0& -4&4|8 \end{bmatrix} \approx^2 \begin{bmatrix} 1&2 & -1|1\\ 0&1&-1|-2\\\ 0& -4&4|8 \end{bmatrix} \approx^3 \begin{bmatrix} 1&2 & -1|1\\ 0&1&-1|-2\\\ 0&0&0|0 \end{bmatrix} $ $1.A_{21}(-1),A_{12}(-4)$ $2. M_2(\frac{-1}{2})$ $3.A_{23}(4)$ The equivalent system for this matrix is now: $z=a$ $y=a-2$ $x+2(a-2)-a=1 \rightarrow x=-a+5$ The solution of the system is $-a+5,a-2,a$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.