Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 26

Answer

The solution of the system is $S=\{\frac{1}{2}t(1-3i),\frac{1}{6}(1+i)t-\frac{1}{3},t\}$

Work Step by Step

Given: $A=\begin{bmatrix} 1 & -3 & 2i\\ -2i & 6 & 2 \end{bmatrix}$ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1 & -3 & 2i | 1\\ -2i & 6 & 2 | -2 \end{bmatrix} \approx^1\begin{bmatrix} 1 & -3 & 2i | 1\\ 0 & 6-6i & -2 | -2+2i \end{bmatrix} \approx^2\begin{bmatrix} 1 & -3 & 2i | 1\\ 0 & 1 & -\frac{1}{6}(1+i) | -\frac{1}{3} \end{bmatrix} $ $1.A_{12}(-32i),A_{13}(-4)$ $3. M_2(\frac{1}{6-6i})$ The equivalent system for this matrix is now: $x_1-3x_2+2ix_3=-\frac{1}{3}$ $x_2-\frac{1}{6}(1+i)x_3=-\frac{1}{3}$ $x_3=t$ There is one free variable, which we take to be $x_3 = t$, where t can assume any complex value. Applying back substitution yields: $x_3=t$ $x_2-\frac{1}{6}(1+i)t=-\frac{1}{3} \rightarrow x_2=\frac{1}{6}(1+i)t-\frac{1}{3} $ $x_1-3(\frac{1}{6}(1+i)t-\frac{1}{3})+2it=-\frac{1}{3} \rightarrow x_1=\frac{1}{2}t(1-3i)$ The solution of the system is $S=\{\frac{1}{2}t(1-3i),\frac{1}{6}(1+i)t-\frac{1}{3},t\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.