Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 32

Answer

See answers below

Work Step by Step

a) $\begin{bmatrix} 4&7\\ -2& 5 \end{bmatrix} \approx^1\begin{bmatrix} 1&\frac{7}{4}\\ -2& 5 \end{bmatrix} \approx^2\begin{bmatrix} 1&\frac{7}{4}\\ 0& \frac{17}{2} \end{bmatrix} \approx^3 \begin{bmatrix} 1&\frac{7}{4}\\ 0& 1 \end{bmatrix}$ $1.M_{1}(\frac{1}{4})$ $2.A_{12}(2)$ $3.M_2(\frac{2}{17})$ b) $rank(A)=2$ c) Use the GaussJordan Technique to determine the inverse of A: $\begin{bmatrix} 4&7 | 1 & 0\\ -2& 5 | 0 & 1 \end{bmatrix} \approx^1\begin{bmatrix} 1&\frac{7}{4} | \frac{1}{4} & 0\\ -2& 5 | 0 & 1 \end{bmatrix} \approx^2\begin{bmatrix} 1&\frac{7}{4} | \frac{1}{4} & 0\\ 0& \frac{17}{2} | \frac{1}{2} & 1 \end{bmatrix} \approx^3 \begin{bmatrix} 1&\frac{7}{4} | \frac{1}{4} & 0\\ 0& 1 | \frac{1}{17} & \frac{2}{17} \end{bmatrix} \approx^4 \begin{bmatrix} 1&0 | \frac{5}{34} & -\frac{7}{34}\\ 0& 1 | \frac{1}{17} & \frac{2}{17} \end{bmatrix}$ $1.M_{1}(\frac{1}{4})$ $2.A_{12}(2)$ $3.M_2(\frac{2}{17})$ $4.A_{21}(-\frac{7}{4})$ Hence here, $A^{-1}=\begin{bmatrix} \frac{5}{4}&-\frac{7}{34}\\ \frac{1}{17}& \frac{2}{17} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.