Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 193: 35

Answer

See answers below

Work Step by Step

a) $\begin{bmatrix} 2&1 & 0 & 0\\ 1& 2 & 0 & 0\\ 0 & 0 & 3 & 4\\ 0 & 0 & 4 & 3 \end{bmatrix} \approx^1 \begin{bmatrix} 1& 2 & 0 & 0\\ 2&1 & 0 & 0\\ 0 & 0 & 3 & 4\\ 0 & 0 & 4 & 3 \end{bmatrix} \approx^2\begin{bmatrix} 1& 2 & 0 & 0\\ 0&-3 & 0 & 0\\ 0 & 0 & 3 & 4\\ 0 & 0 & 1 & -1 \end{bmatrix} \approx^3 \begin{bmatrix} 1& 2 & 0 & 0\\ 0&-3 & 0 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 3 & 4 \end{bmatrix} \approx^4 \begin{bmatrix} 1& 2 & 0 & 0\\ 0&1 & 0 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 7 \end{bmatrix} \approx^5 \begin{bmatrix} 1& 2 & 0 & 0\\ 0&1 & 0 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1 \end{bmatrix} $ $1.P_{12}$ $2.A_{12}(-2),A_{34}(-1)$ $3.P_{34}$ $4.M_2(-\frac{1}{3}),A_{34}(-3)$ $5.M_4(\frac{1}{7})$ b) $rank(A)=42$ c) Use the GaussJordan Technique to determine the inverse of A: $\begin{bmatrix} 2&1 & 0 & 0| 1 & 0 & 0 & 0\\ 1& 2 & 0 & 0 | 0 & 1 & 0 & 0\\ 0 & 0 & 3 & 4| 0 & 0 & 1 &0\\ 0 & 0 & 4 & 3| 0&0 &0&1 \end{bmatrix} \approx^1 \begin{bmatrix} 1& 2 & 0 & 0|0 & 1 & 0 & 0\\ 2&1 & 0 & 0|1 & 0 & 0 & 0\\ 0 & 0 & 3 & 4|0 & 0 & 1 & 0\\ 0 & 0 & 4 & 3 | 0 & 0 & 0 & 1 \end{bmatrix} \approx^2\begin{bmatrix} 1& 2 & 0 & 0 |0 & 1 & 0 & 0\\ 0&-3 & 0 & 0 |1 & -2& 0 & 0\\ 0 & 0 & 3 & 4|0 & 0 & 1 & 0\\ 0 & 0 & 1 & -1|0 & 0 & -1 & 1 \end{bmatrix} \approx^3 \begin{bmatrix} 1& 2 & 0 & 0 |0 & 1 & 0 & 0\\ 0&-3 & 0 & 0|1& -2 & 0 & 0\\ 0 & 0 & 1 & -1|0 & 0 & -1 & 1\\ 0 & 0 & 3 & 4|0 & 0 & 1 & 0 \end{bmatrix} \approx^4 \begin{bmatrix} 1& 2 & 0 & 0|0 & 1 & 0 & 0\\ 0&1 & 0 & 0|-\frac{1}{3} & \frac{2}{3}& 0 & 0\\ 0 & 0 & 1 & -1|0 & 0 & -1& 1\\ 0 & 0 & 0 & 7|0 & 0 & 4 & -3 \end{bmatrix} \approx^5 \approx^6 \begin{bmatrix} 1& 2 & 0 & 0|\frac{2}{3} & \frac{-1}{3}& 0 & 0\\ 0&1 & 0 & 0|-\frac{1}{3} & \frac{2}{3}& 0 & 0\\ 0 & 0 & 1 &0|0&0& -\frac{3}{7} & \frac{4}{7}\\ 0 & 0 & 0 & 1|0 &0& \frac{4}{7} & -\frac{3}{7} \end{bmatrix} $ $1.P_{12}$ $2.A_{12}(-2),A_{34}(-1)$ $3.P_{34}$ $4.M_2(-\frac{1}{3}),A_{34}(-3)$ $5.M_4(\frac{1}{7}),A_{21}(-2)$ $6.A_{43}(1)$ Hence here, $A^{-1}=\begin{bmatrix} \frac{2}{3} & \frac{-1}{3}& 0 & 0\\ -\frac{1}{3} & \frac{2}{3}& 0 & 0\\ 0&0& -\frac{3}{7} & \frac{4}{7}\\ 0 &0& \frac{4}{7} & -\frac{3}{7} \end{bmatrix} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.